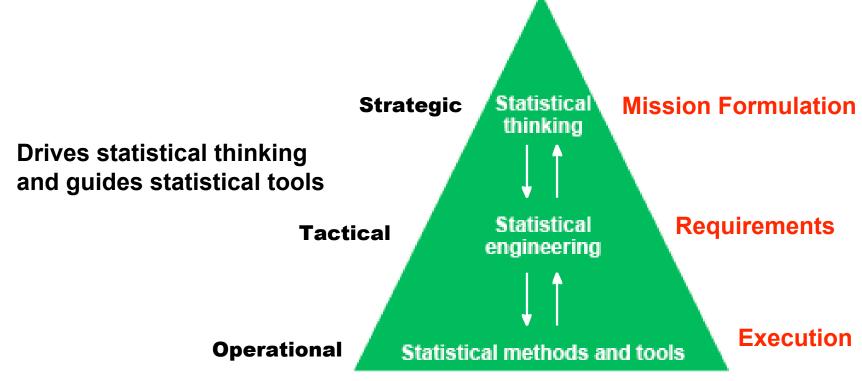


### **Infusing Statistical Engineering**

Peter A. Parker, Ph.D., P.E.


National Aeronautics and Space Administration
Langley Research Center Engineering Directorate
Aeronautics Systems Engineering Branch

May 4, 2011
NASA Statistical Engineering Symposium
Williamsburg, Virginia

## Statistical Engineering at NASA



- Engineering discipline to efficiently gain knowledge through strategic resource investment
- Applies systems thinking to high-level, well-defined objectives
- Synergistic combination of existing tools to solve complex problems



Parker (2008), "Infusing Statistical Engineering in Programs and Projects," NASA LaRC White Paper Figure: Hoerl, R.W. and Snee, R.D. (2010) "Closing the Gap," Quality Progress

## Defining Rocket Motor Requirements



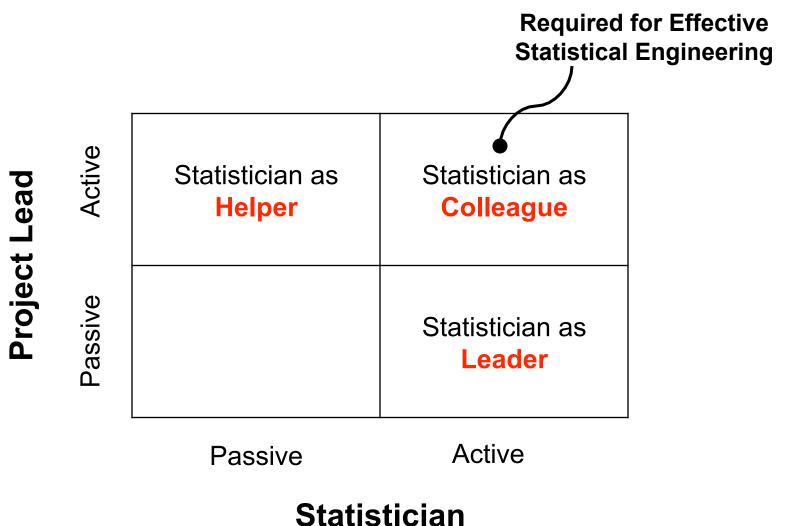


Leveraging heritage design for a new application and requirements

### **Original Question**

- How to measure roll torque during a firing to size the reaction control system?
- Impacts requirements, cost (lifecycle), schedule, volume, mass (payload)

### **Statistical Engineering Applied**


- System level studied apparatus, available theory and data
- Integrated design of experiments with force measurement expertise
- Measured roll torque, quantified uncertainty, reduced design risk
- Internally generated ballistics could not be rigorously isolated
  - Modifications to the firing duty cycle fully achieved objectives
- Embedded in processes, software, and training

## Motivation for Statistical Engineering

- Consistent methodological framework for research and development
  - teachable, repeatable, scalable not idiosyncratic
- Benefits of successful implementation
  - Improved Decision-making risk-informed and defendable
  - Technical excellence unequivocally define objectives, integrity of results/knowledge obtained
  - Organizational excellence strategically applying resources
- Opportunity for statisticians to make greater contributions in achieving strategic organizational objectives

## Changing the Role of the Statistician





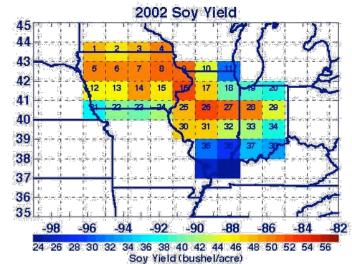
## Starts with Fundamental Questions



- Heilmeier used as a preflight checklist for successfully launching a research project to curb and clarify both the enthusiasm of the researchers and to evaluate the resource demands of the project managers
- What are the precise objectives?
  - What are we seeking to learn?
  - Are the objectives quantifiable, detectable, measurable?
  - What is the impact if you are successful?
- How well do we need to know the answers?
  - How much risk are we willing to accept in being wrong?
  - What are the consequences if we are wrong?
- Do the methods rigorously link to the stated objectives and risk?
  - Are the resources justifiable and defendable?

Questions apply recursively in the vertical direction down to systems and subsystems and horizontally throughout project life-cycle

# Using NASA Satellite Data and Models for Socioeconomic Benefits


 Research into using ozone satellite measurements (Tropospheric Ozone Residual) to improve soybean crop yield

### **Original Question**

 Can we develop a correlation between satellite measurements and ground-based measurements of ozone?

### **Statistical Engineering Applied**

- Synthesized multidisciplinary team member ideas on the objectives to clearly define the research questions and approach
- Satellite and ground provide different types of useful information
- Modeled yield as a function of temperature, soil moisture, and ozone (satellite and ground)
- Impact: Provided new framework, impetus for additional research



## Vital Implementation Elements



#### Leadership

- Requires leadership to convert a "good idea" into "the new way we do business"
- Articulate motivation, communicate expectations, be accountable
- Core Competency
  - Discipline experts matrixed across programs/projects
  - Multidisciplinary skills are required
  - Teaming and communication skills are critical
- Equipping People with Knowledge and Tools
  - Broaden awareness of this discipline
  - Consult with researchers and lead engineers, equip practitioners
- To be seen as value-added and measure effectiveness

## Our Progress at NASA Langley



- Building a statistical engineering capability takes a deliberate strategy
- Obtained leadership support through demonstrated benefits
- Growing a core team with multi-disciplinary competence
- Broadened knowledge of the discipline by recognized project impact

### Areas we need to improve

- Inextricably link statistical engineering to organizational objectives
- Assist leadership to further engage and commit with specific actions



## Our Vision for Statistical Engineering



- Tactical Discipline that
  - Drives critical, statistical thinking at the strategic level
  - Guides statistical methods and research at the operational level
- Improves our effectiveness in accomplishing our mission
  - Defines the right questions
  - Guides strategic resource investment
  - Accelerates research and development
- Not a replacement for good science and engineering
- To promote best practices within our Agency and profession